Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Y.-F Liu,* H.-T Xia and S.-A Li

Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China

Correspondence e-mail: xht161006@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.005 Å R factor = 0.054 wR factor = 0.152 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 17 September 2006 Accepted 18 September 2006

2-Amino-4,6-dimethoxypyrimidin-1-ium 1-methyl-5-sulfamoyl-1*H*-pyrazole-4carboxylate

In the title compound, $C_6H_{10}N_3O_2^+ \cdot C_5H_6N_3O_4S^-$, the pyrimidinium cation acts as a strong hydrogen-bond donor *via* the NH₂ and NH groups, with the carboxylate groups of the pyrazole group acting as the acceptors. These hydrogen bonds lead to fused $R_2^2(8)$ rings, which form sheets parallel to the [101] plane

Comment

During the course of studies on the coordination chemistry of pyrazosulfuronethyl by hydrothermal methods, we obtained crystals of the title compound, (I); we now report the structure and supramolecular arrangement of (I) (Fig. 1).

In the crystal structure of (I), ions are linked into chains involving two $R_2^2(8)$ rings (Bernstein *et al.*, 1995) through C– H···O, C–H···N and N–H···O hydrogen bonds (Fig. 2 and Table 2). Neighboring chains are linked into sheets by two N– H···O hydrogen bonds (Fig. 3). Neighboring sheets are connected by C–H···O and N–H···O hydrogen bonds, resulting in a three-dimensional network structure (Fig. 4).

Figure 1

The asymmetric unit of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

Figure 2

Part of the crystal structure of (I), showing the formation of a hydrogenbonded chain built from two $R_2^2(8)$ rings. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (B) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$].

Experimental

Solutions of pyrazosulfuronethyl (1 mmol) in water (20 ml) and cupric nitrate (1 mmol) in water (10 ml) were mixed; the mixture was maintained at 393 K for 5 h by the hydrothermal method and left overnight at room temperature; the solution was allowed to stand, slowly producing crystals of (I) slowly.

Crystal data

$C_6H_{10}N_3O_2^+ \cdot C_5H_6N_3O_4S^-$
$M_r = 360.36$
Monoclinic, $C2/c$
a = 22.843 (10) Å
b = 10.484 (5) Å
c = 13.921 (6) Å
$\beta = 104.411 \ (7)^{\circ}$
V = 3229 (3) Å ³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.905, T_{\max} = 0.951$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.152$ S = 1.002845 reflections 218 parameters Z = 8 D_x = 1.483 Mg m⁻³ Mo K α radiation μ = 0.24 mm⁻¹ T = 298 (2) K Block, dark pink 0.42 × 0.40 × 0.21 mm

8217 measured reflections 2845 independent reflections 1467 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.065$ $\theta_{\text{max}} = 25.0^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0793P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$

Figure 4

different view of the crystal structure of (I); the formation of a threedimensional network structure built from $C-H\cdots O$ and $N-H\cdots O$ interactions. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) 1 - x, 1 - y, 1 - z; (B) -x, 1 + y, $\frac{1}{2} - z$; (C) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (D) x, 1 - y, $\frac{1}{2} + z$; (E) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$].

Figure 3

A larger portion of the crystal structure of (I); the formation of a hydrogen-bonded sheet built from $N-H\cdots O$ interactions. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (B) x, 1 + y, z; (C) $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$].

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C8-H8···N2 ⁱ	0.93	2.57	3.503 (5)	176
$C11 - H11A \cdots O2^{ii}$	0.96	2.71	3.080 (5)	104
N4-H4···O3 ⁱⁱⁱ	0.86	1.73	2.583 (4)	175
$C4-H4B\cdots O5^{i}$	0.96	2.45	3.383 (5)	164
$N6-H6A\cdotsO1^{iv}$	0.86	2.12	2.948 (4)	161
$N6-H6B\cdots O4^{iii}$	0.86	1.98	2.842 (4)	179
$N3-H3A\cdots O4^{iii}$	0.89	2.03	2.902 (5)	166

Symmetry codes: (i) -x, -y, -z; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv)

All H atoms were located in difference Fourier maps and then treated as riding atoms, with C–H distances of 0.93 (aryl) and 0.96 Å (methyl), N–H distances of 0.86 and 0.89 Å, and $U_{\rm iso}({\rm H}) = 1.2({\rm C} {\rm aryl}, {\rm N})$ or $1.5U_{\rm eq}({\rm C} {\rm methyl})$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Liaocheng University Science Foundation.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.