Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Y.-F Liu,* H.-T Xia and S.-A Li

Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China

Correspondence e-mail: xht161006@hhit.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.152$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

2-Amino-4,6-dimethoxypyrimidin-1-ium 1-methyl-5-sulfamoyl-1H-pyrazole-4carboxylate

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{-}$, the pyrimidinium cation acts as a strong hydrogen-bond donor via the NH_{2} and NH groups, with the carboxylate groups of the pyrazole group acting as the acceptors. These hydrogen bonds lead to fused $R_{2}^{2}(8)$ rings, which form sheets parallel to the [10 $\overline{1}]$ plane

Comment

During the course of studies on the coordination chemistry of pyrazosulfuronethyl by hydrothermal methods, we obtained crystals of the title compound, (I); we now report the structure and supramolecular arrangement of (I) (Fig. 1).

In the crystal structure of (I), ions are linked into chains involving two $R_{2}^{2}(8)$ rings (Bernstein et al., 1995) through $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2). Neighboring chains are linked into sheets by two $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 3). Neighboring sheets are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in a three-dimensional network structure (Fig. 4).

Figure 1
The asymmetric unit of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Part of the crystal structure of (I), showing the formation of a hydrogenbonded chain built from two $R_{2}^{2}(8)$ rings. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (B) $\frac{1}{2}+x, \frac{1}{2}-y$, $\left.\frac{1}{2}+z\right]$.

Experimental

Solutions of pyrazosulfuronethyl (1 mmol) in water (20 ml) and cupric nitrate (1 mmol) in water (10 ml) were mixed; the mixture was maintained at 393 K for 5 h by the hydrothermal method and left overnight at room temperature; the solution was allowed to stand, slowly producing crystals of (I) slowly.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{-}$
$M_{r}=360.36$
Monoclinic, $C 2 / c$
$a=22.843$ (10) \AA
$b=10.484$ (5) \AA
$c=13.921$ (6) \AA
$\beta=104.411$ (7) ${ }^{\circ}$
$V=3229(3) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.905, T_{\text {max }}=0.951$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.152$
$S=1.00$
2845 reflections
218 parameters

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.483 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.24 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, dark pink } \\
& 0.42 \times 0.40 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

8217 measured reflections 2845 independent reflections
1467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=25.0^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0793 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.28$ e $^{-3}$

Figure 4
different view of the crystal structure of (I); the formation of a threedimensional network structure built from $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) $1-x, 1-y, 1-z$; (B) $-x, 1+y, \frac{1}{2}-z$; (C) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (D) $x, 1-y, \frac{1}{2}+z$; (E) $\left.\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$.

Figure 3
A larger portion of the crystal structure of (I); the formation of a hydrogen-bonded sheet built from $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (B) $x, 1+y, z ;$ (C) $\left.\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.57	$3.503(5)$	176
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.71	$3.080(5)$	104
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{iii}}$	0.86	1.73	$2.583(4)$	175
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.45	$3.383(5)$	164
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots 1^{\mathrm{iv}}$	0.86	2.12	$2.948(4)$	161
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 4^{\mathrm{iii}}$	0.86	1.98	$2.842(4)$	179
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots 4^{\text {iii }}$	0.89	2.03	$2.902(5)$	166

Symmetry codes: (i) $-x,-y,-z$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

All H atoms were located in difference Fourier maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aryl) and $0.96 \AA$ (methyl), $\mathrm{N}-\mathrm{H}$ distances of 0.86 and $0.89 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2(\mathrm{C}$ aryl, N) or $1.5 U_{\text {eq }}(\mathrm{C}$ methyl $)$.

organic papers

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Liaocheng University Science Foundation.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

